Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.059
Filter
1.
Elife ; 122024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588001

ABSTRACT

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Subject(s)
Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-abl , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Models, Molecular , Protein-Tyrosine Kinases/metabolism , src Homology Domains , Imatinib Mesylate/pharmacology
2.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689280

ABSTRACT

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Subject(s)
Fibroblasts , Fibrosis , Myofibroblasts , Proto-Oncogene Proteins c-abl , Receptors for Activated C Kinase , Signal Transduction , Animals , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Humans , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Kidney/pathology , Kidney/metabolism , Male , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Mice, Knockout , Mice, Inbred C57BL
4.
Elife ; 122023 10 16.
Article in English | MEDLINE | ID: mdl-37843155

ABSTRACT

c-Abl kinase, a key signaling hub in many biological processes ranging from cell development to proliferation, is tightly regulated by two inhibitory Src homology domains. An N-terminal myristoyl modification can bind to a hydrophobic pocket in the kinase C-lobe, which stabilizes the autoinhibitory assembly. Activation is triggered by myristoyl release. We used molecular dynamics simulations to show how both myristoyl and the Src homology domains are required to impose the full inhibitory effect on the kinase domain and reveal the allosteric transmission pathway at residue-level resolution. Importantly, we find myristoyl insertion into a membrane to thermodynamically compete with binding to c-Abl. Myristoyl thus not only localizes the protein to the cellular membrane, but membrane attachment at the same time enhances activation of c-Abl by stabilizing its preactivated state. Our data put forward a model in which lipidation tightly couples kinase localization and regulation, a scheme that currently appears to be unique for this non-receptor tyrosine kinase.


Subject(s)
Proto-Oncogene Proteins c-abl , src Homology Domains , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Signal Transduction , Molecular Dynamics Simulation
5.
J Biol Chem ; 299(7): 104887, 2023 07.
Article in English | MEDLINE | ID: mdl-37271338

ABSTRACT

The neuroepithelial cell transforming gene 1 (Net1) is a guanine nucleotide exchange factor for the small GTPase RhoA that promotes cancer cell motility and metastasis. Two isoforms of Net1 exist, Net1 and Net1A, both of which are sequestered in the nucleus in quiescent cells to prevent aberrant RhoA activation. Many cell motility stimuli drive cytosolic relocalization of Net1A, but mechanisms controlling this event are not fully understood. Here, we demonstrate that epithelial growth factor stimulates protein kinase Src- and Abl1-dependent phosphorylation of Net1A to promote its cytosolic localization. We show that Abl1 efficiently phosphorylates Net1A on Y373, and that phenylalanine substitution of Y373 prevents Net1A cytosolic localization. Furthermore, we found that Abl1-driven cytosolic localization of Net1A does not require S52, which is a phosphorylation site of a different kinase, c-Jun N-terminal kinase, that inhibits nuclear import of Net1A. However, we did find that MKK7-stimulated cytosolic localization of Net1A does require Y373. We also demonstrate that aspartate substitution at Y373 is sufficient to promote Net1A cytosolic accumulation, and expression of Net1A Y373D potentiates epithelial growth factor-stimulated RhoA activation, downstream myosin light chain 2 phosphorylation, and F-actin accumulation. Moreover, we show that expression of Net1A Y373D in breast cancer cells also significantly increases cell motility and Matrigel invasion. Finally, we show that Net1A is required for Abl1-stimulated cell motility, which is rescued by expression of Net1A Y373D, but not Net1A Y373F. Taken together, this work demonstrates a novel mechanism controlling Net1A subcellular localization to regulate RhoA-dependent cell motility and invasion.


Subject(s)
Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins c-abl , rhoA GTP-Binding Protein , Cell Movement , Cytosol/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Phosphorylation , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Proto-Oncogene Proteins c-abl/metabolism
6.
Blood Cancer J ; 13(1): 42, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959186

ABSTRACT

Deletion of ABL1 was detected in a cohort of hematologic malignancies carrying AML1-ETO and NUP98 fusion proteins. Abl1-/- murine hematopoietic cells transduced with AML1-ETO and NUP98-PMX1 gained proliferation advantage when compared to Abl1 + /+ counterparts. Conversely, overexpression and pharmacological stimulation of ABL1 kinase resulted in reduced proliferation. To pinpoint mechanisms facilitating the transformation of ABL1-deficient cells, Abl1 was knocked down in 32Dcl3-Abl1ko cells by CRISPR/Cas9 followed by the challenge of growth factor withdrawal. 32Dcl3-Abl1ko cells but not 32Dcl3-Abl1wt cells generated growth factor-independent clones. RNA-seq implicated PI3K signaling as one of the dominant mechanisms contributing to growth factor independence in 32Dcl3-Abl1ko cells. PI3K inhibitor buparlisib exerted selective activity against Lin-cKit+ NUP98-PMX1;Abl1-/- cells when compared to the Abl1 + /+ counterparts. Since the role of ABL1 in DNA damage response (DDR) is well established, we also tested the inhibitors of ATM (ATMi), ATR (ATRi) and DNA-PKcs (DNA-PKi). AML1-ETO;Abl1-/- and NUP98-PMX1;Abl1-/- cells were hypersensitive to DNA-PKi and ATRi, respectively, when compared to Abl1 + /+ counterparts. Moreover, ABL1 kinase inhibitor enhanced the sensitivity to PI3K, DNA-PKcs and ATR inhibitors. In conclusion, we showed that ABL1 kinase plays a tumor suppressor role in hematological malignancies induced by AML1-ETO and NUP98-PMX1 and modulates the response to PI3K and/or DDR inhibitors.


Subject(s)
Leukemia , Phosphatidylinositol 3-Kinases , Animals , Humans , Mice , Core Binding Factor Alpha 2 Subunit/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RUNX1 Translocation Partner 1 Protein/genetics , Proto-Oncogene Proteins c-abl/metabolism
8.
Sci Transl Med ; 15(679): eabp9352, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36652533

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5,000,000 cases worldwide. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the pathogenesis of the disease. Animal models of PD suggest that activation of Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and initiates processes leading to degeneration of dopaminergic and nondopaminergic neurons. Given the potential role of c-Abl in PD, a c-Abl inhibitor library was developed to identify orally bioavailable c-Abl inhibitors capable of crossing the blood-brain barrier based on predefined characteristics, leading to the discovery of IkT-148009. IkT-148009, a brain-penetrant c-Abl inhibitor with a favorable toxicology profile, was analyzed for therapeutic potential in animal models of slowly progressive, α-synuclein-dependent PD. In mouse models of both inherited and sporadic PD, IkT-148009 suppressed c-Abl activation to baseline and substantially protected dopaminergic neurons from degeneration when administered therapeutically by once daily oral gavage beginning 4 weeks after disease initiation. Recovery of motor function in PD mice occurred within 8 weeks of initiating treatment concomitantly with a reduction in α-synuclein pathology in the mouse brain. These findings suggest that IkT-148009 may have potential as a disease-modifying therapy in PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Mice , Animals , alpha-Synuclein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Neurodegenerative Diseases/pathology , Proto-Oncogene Proteins c-abl/metabolism , Brain/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism
9.
Parkinsonism Relat Disord ; 108: 105281, 2023 03.
Article in English | MEDLINE | ID: mdl-36717298

ABSTRACT

BACKGROUND: Preclinical evidence suggests that c-Abl is critical in the pathogenesis of Parkinson's Disease (PD). Vodobatinib (K0706) is a potent, specific Abl kinase inhibitor currently being developed for the treatment of PD. In previously reported studies, nilotinib, a multikinase c-Abl inhibitor, did not show clinical activity as evidenced by no improvement of symptoms or the rate of decline after one to six months of treatment at the maximum permissible dose, presumably because of insufficient CNS penetration. Here we report clinical PK and safety data for vodobatinib. OBJECTIVES: To determine safety, plasma PK, and CSF penetration of vodobatinib in healthy volunteers and PD subjects following oral administration, and compare CSF levels to in vitro concentrations required for c-Abl inhibition relative to data reported for nilotinib. METHODS: Inhibition of c-Abl kinase activity and c-Abl binding affinity were first assessed in vitro. Healthy human volunteers and PD patients received various oral doses of vodobatinib once-daily for seven and fourteen days respectively, to assess safety, and plasma and CSF PK. RESULTS: In in vitro assays, vodobatinib was more potent (kinase IC50 = 0.9 nM) than nilotinib (kinase IC50 = 15-45 nM). Administration of vodobatinib 48, 192 and 384 mg to healthy subjects for 7 days yielded mean Cmax, CSF values of 1.8, 11.6, and 12.2 nM respectively, with the two highest doses exceeding the IC50 over the entire dosing interval. Cavg, CSF values were 6-8 times greater than the IC50. Comparable CSF levels were observed in PD patients. All doses were well tolerated in both cohorts. CONCLUSION: Based on achieved CSF concentrations, the potential for c-Abl inhibition in the brain is substantially higher with vodobatinib than with nilotinib. The CSF PK profile of vodobatinib is suitable for determining if c-Abl inhibition will be neuroprotective in PD patients.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Proto-Oncogene Proteins c-abl/metabolism , Brain/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacokinetics
10.
Cells ; 11(24)2022 12 08.
Article in English | MEDLINE | ID: mdl-36552734

ABSTRACT

Non-receptor tyrosine kinase, c-Abl plays a role in the pathogenesis of several neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Here, we found that TDP-43, which was one of the main proteins comprising pathological deposits in amyotrophic lateral sclerosis (ALS), is a novel substrate for c-Abl. The phosphorylation of tyrosine 43 of TDP-43 by c-Abl led to increased TDP-43 levels in the cytoplasm and increased the formation of G3BP1-positive stress granules in SH-SY5Y cells. The kinase-dead mutant of c-Abl had no effect on the cytoplasmic localization of TDP-43. The expression of phosphor-mimetic mutant Y43E of TDP-43 in primary cortical neurons accumulated the neurite granule. Furthermore, the phosphorylation of TDP-43 at tyrosine 43 by c-Abl promoted the aggregation of TDP-43 and increased neuronal cell death in primary cortical neurons, but not in c-Abl-deficient primary cortical neurons. Identification of c-Abl as the kinase of TDP43 provides new insight into the pathogenesis of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Proto-Oncogene Proteins c-abl , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Neuroblastoma , Phosphorylation , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Tyrosine/metabolism
11.
Angew Chem Int Ed Engl ; 61(46): e202117276, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36257909

ABSTRACT

Soellner published on the interplay between allosteric and adenosine triphosphate (ATP)-competitive inhibitors of ABL kinase, showing that the latter preferably binds to different conformational states of ABL compared to allosteric agents that specifically target the ABL myristate pocket (STAMP) and deducing that asciminib cannot bind to ABL simultaneously with ATP-competitive drugs. These results are to some extent in line with ours, although our analyses of dose-response matrices from combinations of asciminib with imatinib, nilotinib or dasatinib, show neither synergy nor antagonism, but suggest additive antiproliferative effects on BCR-ABL-dependent KCL22 cells. Furthermore, our X-ray crystallographic, solution nuclear magnetic resonance (NMR), and isothermal titration calorimetry studies show that asciminib can bind ABL concomitantly with type-1 or -2 ATP-competitive inhibitors to form ternary complexes. Concomitant binding of asciminib with imatinib, nilotinib, or dasatinib might translate to benefit some chronic myeloid leukaemia patients.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Humans , Imatinib Mesylate/pharmacology , Dasatinib/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl , Drug Resistance, Neoplasm
12.
Int J Med Sci ; 19(12): 1753-1761, 2022.
Article in English | MEDLINE | ID: mdl-36313229

ABSTRACT

The nonreceptor tyrosine kinase c-Abl is inactive under normal conditions. Upon activation, c-Abl regulates signaling pathways related to cytoskeletal reorganization. It plays a vital role in modulating cell protrusion, cell migration, morphogenesis, adhesion, endocytosis and phagocytosis. A large number of studies have also found that abnormally activated c-Abl plays an important role in a variety of pathologies, including various inflammatory diseases and neurodegenerative diseases. c-Abl also plays a crucial role in neurodevelopment and neurodegenerative diseases, mainly through mechanisms such as neuroinflammation, oxidative stress (OS), and Tau protein phosphorylation. Inhibiting expression or activity of this kinase has certain neuroprotective and anti-inflammatory effects and can also improve cognition and behavior. Blockers of this kinase may have good preventive and treatment effects on neurodegenerative diseases. Cognitive dysfunction after anesthesia is also closely related to the abovementioned mechanisms. We infer that alterations in the expression and activity of c-Abl may underlie postoperative cognitive dysfunction (POCD). This article summarizes the current understanding and research progress on the mechanisms by which c-Abl may be related to postoperative neurodegeneration.


Subject(s)
Neurodegenerative Diseases , Proto-Oncogene Proteins c-abl , Humans , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Protein-Tyrosine Kinases/metabolism , Phosphorylation , Neurodegenerative Diseases/etiology , Signal Transduction
13.
Immunobiology ; 227(5): 152262, 2022 09.
Article in English | MEDLINE | ID: mdl-36049365

ABSTRACT

The oncogene ABL1 plays an important role in various cancers, while its roles remain unclear in pneumonia. This study aims to investigate the roles of ABL1 in pneumonia and the underlying mechanisms. RNA sequencing was used to determine the expressions of multiple kinases in the PBMCs. A series of overexpression and knockout cell lines were constructed. Besides, an intranasal lung infection mouse model was pre-treated with asciminb. ELISAs and qPCR were used to determine the levels of target genes. In addition, STRING Interaction Network and Immunoblotting assays were used to determine the interaction between target proteins. An elevation in ABL1 was observed in the infant with Ecoli pneumonia. ABL1 was positively correlated to the levels of inflammatory cytokines and the activation of the NF-kB pathways. In vivo data demonstrated that the inhibition of ABL1 suppressed the inflammatory cytokines, reduced the lung bacterial burden, and ameliorated the lung injury score. ABL1 inhibited the phosphorylation of IκBα and p38 and regulated the ubiquitination of TRAF6. ABL1 regulates the inflammatory response in pneumonia in part by the regulation of MAPK and NF-κB pathways and TRAF6 ubiquitination.


Subject(s)
Immunity, Innate , NF-kappa B , Proto-Oncogene Proteins c-abl , TNF Receptor-Associated Factor 6 , Animals , Cytokines/metabolism , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Inflammation/genetics , Inflammation/metabolism , Mice , NF-kappa B/metabolism , Oncogenes , Proto-Oncogene Proteins c-abl/metabolism , TNF Receptor-Associated Factor 6/metabolism , Ubiquitination
14.
Cell Rep ; 40(9): 111268, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044842

ABSTRACT

Patients with human epidermal growth factor receptor 2-positive (HER2+/ERBB2) breast cancer often present with brain metastasis. HER2-targeted therapies have not been successful to treat brain metastases in part due to poor blood-brain barrier (BBB) penetrance and emergence of resistance. Here, we report that Abelson (ABL) kinase allosteric inhibitors improve overall survival and impair HER2+ brain metastatic outgrowth in vivo. Mechanistically, ABL kinases phosphorylate the RNA-binding protein Y-box-binding protein 1 (YB-1). ABL kinase inhibition disrupts binding of YB-1 to the ERBB2 mRNA and impairs translation, leading to a profound decrease in HER2 protein levels. ABL-dependent tyrosine phosphorylation of YB-1 promotes HER2 translation. Notably, loss of YB-1 inhibits brain metastatic outgrowth and impairs expression of a subset of ABL-dependent brain metastatic targets. These data support a role for ABL kinases in the translational regulation of brain metastatic targets through YB-1 and offer a therapeutic target for HER2+ brain metastasis patients.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Proto-Oncogene Proteins c-abl , Y-Box-Binding Protein 1 , Brain/metabolism , Brain Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/secondary , Cell Line, Tumor , Female , Humans , Proto-Oncogene Proteins c-abl/metabolism , Receptor, ErbB-2/metabolism , Y-Box-Binding Protein 1/genetics
15.
DNA Cell Biol ; 41(8): 727-734, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35788154

ABSTRACT

Exposure to organochlorines is associated with epigenetic changes, including methylation change in the promoter of tumor suppressor genes, thereby leading to cancer induction. The aim of this study was to investigate the relationship between organochlorine pesticides (OCPs) and ABL1 promoter methylation in child patients with acute lymphoblastic leukemia (ALL) and the control group. The methylation rate of the ABL1 promoter was evaluated using the methylation-specific polymerase chain reaction method, and the level of OCPs in patients with ALL and healthy children was measured using gas chromatography. ABL1 promoter hypermethylation was observed in 64% of ALL patients and 28.5% of children in the control group. The level of OCPs in children with methylated ABL1 promoters was significantly higher than that in children with nonmethylated ABL1 promoters (p < 0.05). Our findings suggest that OCPs, especially alpha-hexachlorocyclohexane, beta-hexachlorocyclohexane, gamma-hexachlorocyclohexane, 2,4 dichlorodiphenyldichloroethylene, and 4,4 dichlorodiphenyltrichloroethane may induce methylation at the ABL1 promoter level, thereby preventing the normal expression of the ABL1 gene. As a result, the reduced expression of ABL1 (a tumor suppressor) gene due to the hypermethylation of its promoter leads to the disruption of normal biological processes, thus making cells vulnerable to oncogenic factors.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-abl/metabolism , Child , DNA Methylation/genetics , Humans , Hydrocarbons, Chlorinated/toxicity , Pesticides/toxicity , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Promoter Regions, Genetic/genetics
16.
Nat Commun ; 13(1): 3541, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725977

ABSTRACT

Protein kinases play central roles in cellular regulation by catalyzing the phosphorylation of target proteins. Kinases have inherent structural flexibility allowing them to switch between active and inactive states. Quantitative characterization of kinase conformational dynamics is challenging. Here, we use nanopore tweezers to assess the conformational dynamics of Abl kinase domain, which is shown to interconvert between two major conformational states where one conformation comprises three sub-states. Analysis of kinase-substrate and kinase-inhibitor interactions uncovers the functional roles of relevant states and enables the elucidation of the mechanism underlying the catalytic deficiency of an inactive Abl mutant G321V. Furthermore, we obtain the energy landscape of Abl kinase by quantifying the population and transition rates of the conformational states. These results extend the view on the dynamic nature of Abl kinase and suggest nanopore tweezers can be used as an efficient tool for other members of the human kinome.


Subject(s)
Nanopores , Humans , Molecular Conformation , Phosphorylation , Protein Conformation , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-abl/metabolism
17.
J Biol Chem ; 298(6): 102029, 2022 06.
Article in English | MEDLINE | ID: mdl-35569509

ABSTRACT

Epidermal growth factor receptor (EGFR) is a causal factor in carcinoma, yet many carcinoma patients are resistant to EGFR inhibitors. Potential insight into this resistance stems from prior work that showed EGFR in normal epithelial cells docks to the extracellular domain of the plasma membrane proteoglycan syndecan-4 (Sdc4) engaged with α3ß1 and α6ß4 integrins. We now report that this receptor complex is modified by the recruitment of syndecan-2 (Sdc2), the Recepteur d'Origine Nantais (RON) tyrosine kinase, and the cellular signaling mediator Abelson murine leukemia viral oncogene homolog 1 (ABL1) in triple-negative breast carcinoma and head and neck squamous cell carcinoma, where it contributes to EGFR kinase-independent proliferation. Treatment with a peptide mimetic of the EGFR docking site in the extracellular domain of Sdc4 (called SSTNEGFR) disrupts the entire complex and causes a rapid, global arrest of the cell cycle. Normal epithelial cells do not recruit these additional receptors to the adhesion mechanism and are not arrested by SSTNEGFR. Although EGFR docking with Sdc4 in the tumor cells is required, cell cycle progression does not depend on EGFR kinase. Instead, progression depends on RON kinase, activated by its incorporation into the complex. RON activates ABL1, which suppresses p38 mitogen-activated protein kinase and prevents a p38-mediated signal that would otherwise arrest the cell cycle. These findings add to the growing list of receptor tyrosine kinases that support tumorigenesis when activated by their association with syndecans at sites of matrix adhesion and identify new potential targets for cancer therapy.


Subject(s)
Carcinoma , Cell Cycle , ErbB Receptors , Receptor Protein-Tyrosine Kinases , Syndecan-2 , Syndecan-4 , Carcinoma/pathology , Cell Membrane/metabolism , ErbB Receptors/metabolism , Humans , Proto-Oncogene Proteins c-abl/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Syndecan-2/metabolism , Syndecan-4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Hum Exp Toxicol ; 41: 9603271221084672, 2022.
Article in English | MEDLINE | ID: mdl-35303413

ABSTRACT

Liver fibrosis is a wound-healing response and the activation of the hepatic stellate cell (HSC) is the core of hepatic fibrosis. MicroRNAs (miRNAs) participate in the development of fibrosis. It is reported that histone deacetylases (HDAC2) tyrosine phosphorylation by cellular-Abelsongene (c-Abl) induces malignant growth of cells. Here, we investigated the effect of miR-122-5p on the proliferation and apoptosis of HSCs. Normal human HSC line LX-2 and LX-2 cells stimulated by transforming growth factor (TGF)-ß1 for 24 h were cultured and assigned into the blank group and the TGF-ß1 group. The miR-122-5p inhibitor and its negative control were transfected into LX-2 cells and miR-122-5p mimic and its negative control were transfected into LX-2 cells stimulated by TGF-ß1. The result showed that miR-122-5p expression was decreased in TGF-ß1-stimulated LX-2 cells. miR-122-5p overexpression reduced the mRNA and protein levels of collagen I and α-smooth muscle actin, inhibited cell proliferation, and accelerated cell apoptosis. miR-122-5p targeted c-Abl. Meanwhile, miR-122-5p overexpression inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway. In summary, miR-122-5p overexpression exerted anti-fibrosis effect and inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Hepatic Stellate Cells/physiology , Histone Deacetylase 2/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Cell Line , Gene Expression Regulation/drug effects , Hepatic Stellate Cells/drug effects , Histone Deacetylase 2/genetics , Humans , MicroRNAs/genetics , Proto-Oncogene Proteins c-abl/genetics , Signal Transduction , Transforming Growth Factor beta1/pharmacology
19.
J Biol Chem ; 298(4): 101778, 2022 04.
Article in English | MEDLINE | ID: mdl-35231444

ABSTRACT

Cytoskeletal microtubules (MTs) are nucleated from γ-tubulin ring complexes (γTuRCs) located at MT organizing centers (MTOCs), such as the centrosome. However, the exact regulatory mechanism of γTuRC assembly is not fully understood. Here, we showed that the nonreceptor tyrosine kinase c-Abl was associated with and phosphorylated γ-tubulin, the essential component of the γTuRC, mainly on the Y443 residue by in vivo (immunofluorescence and immunoprecipitation) or in vitro (surface plasmon resonance) detection. We further demonstrated that phosphorylation deficiency significantly impaired γTuRC assembly, centrosome construction, and MT nucleation. c-Abl/Arg deletion and γ-tubulin Y443F mutation resulted in an abnormal morphology and compromised spindle function during mitosis, eventually causing uneven chromosome segregation. Our findings reveal that γTuRC assembly and nucleation function are regulated by Abl kinase-mediated γ-tubulin phosphorylation, revealing a fundamental mechanism that contributes to the maintenance of MT function.


Subject(s)
Microtubule-Organizing Center , Microtubules , Proto-Oncogene Proteins c-abl , Tubulin , Centrosome/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Phosphorylation , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Tubulin/genetics , Tubulin/metabolism
20.
Anal Chem ; 94(2): 1491-1497, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34985875

ABSTRACT

An amyloid-beta peptide (Aß) is generally believed to be a pathological marker of Alzheimer's disease (AD), but it is still of great significance to explore the upstream and downstream relationship of Aß in AD. It is previously reported that c-Abl, a nonreceptor tyrosine kinase, can be activated by Aß, but the interaction between Aß and c-Abl is still unknown. Herein, an extended-gate field-effect transistor (EG-FET)-based sensor has been developed to monitor the level of c-Abl with high sensitivity and selectivity. Our peptide-functionalized EG-FET sensor as the signal transducer can follow c-Abl activity with electron transfer by its specific phosphorylation. The sensor presents a good linear correlation over c-Abl concentrations of 1 pg/mL to 3.05 µg/mL. The sensor was successfully applied to quantify c-Abl activity in the brain tissue of AD transgenic mice, and the interaction between c-Abl and Aß in AD mice was explored by administering the c-Abl inhibitor (imatinib) and the agonist (DPH). Our work is expected to provide an important reference for early diagnosis and treatment of AD.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Proto-Oncogene Proteins c-abl , Transistors, Electronic , Alzheimer Disease/diagnosis , Alzheimer Disease/enzymology , Amyloid beta-Peptides/metabolism , Animals , Biomarkers/analysis , Biomarkers/metabolism , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Phosphorylation , Proto-Oncogene Proteins c-abl/analysis , Proto-Oncogene Proteins c-abl/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...